National Petroleum Council Study

“Prudent Development – Realizing the Potential of North America’s Abundant Natural Gas and Oil Resources” (September 2011)

Onshore Gas Topic Paper Update

October | 2013
NPC Onshore Gas Topic Paper #1-8 Update

Revisiting the Onshore Gas resource cases

- Case 1 (low) no longer fits historical trends

- Three more years of data is available since the National Petroleum Council study was performed (www.npc.org)

- Gas production performance continues to be very strong despite falling prices

- From a “bottom-up” point of view:
 - New discoveries have been (and continue to be) made
 - Associated gas has become much more significant
 - More recent studies, like the PGC and EIA/ARI, continue to increase their gas resource estimates which are now consistent with the NPC, MITei, and RSTG data used in the original study

- The following slides provide additional “top-down” points of view
U.S. Plus Canada Onshore Production Profile

Excerpt of Figure 16, with three additional years added

USL-48 + Canada Onshore Natural Gas Production History

- **Total**
- **Conv**
- **Old Tech UC**
- **New Tech UC (shale)**
- **Conv + Old Tech UC**

Note slope change as unconventional CBM and tight gas start to contribute

U.S. Conventional Peak in 1973

CBM and tight gas start to contribute (est pre-1997)

Shale gas starts to contribute

2012 up to 77 BCFD, not at peak capacity; note impact as modern shale plays contribute

Data sources: US EIA, USGS, CAPP, NEB Canada, Cedigaz, IHS CERA
Supply Stack Curves

Excerpt of Figure 17, with cumulative production through YE2012

Notes
1. History: $Money of the day (source: EIA)
2. Stack: $Supply Cost @10%

Case 1 doesn’t fit recent market data

Historical Prices

Approximate price at which production remains flat

Historical Price
- Case 1
- Case 2
- Case 3

Price Cutoff

data sources: US EIA, MITei
Supply Stack Curves - Annotated

Notes
1. History: $Money of the day (source: EIA)
2. Stack: $Supply Cost @10%

Over time these curves are trending down to the right – i.e. more resource available at a lower cost.

Approximate price at which production remains flat

Historical Price
- Case 2
- Case 3
- Price Cutoff

~1,200 TCFG
Produced to date

Estimated Ultimate Recoverable Resource (TCFG)

Zoom-in of Slide 4 – 1,200 TCFG available at < $5 supply cost
Based on updated market and production data, Case 1 no longer fits historical trends.
Basins with significant new unconventional discoveries since 2008 are likely to increase the unconventional fraction to >90% (or 10 times the conventional recoverable resource).

Based only on conventional recovery to date of ~1,000 TCFG (Slide 6); ultimate unconventional recovery could be ~10,000 TCFG.

Note that this is over twice the Case 3 estimate of ultimate recoverable resource (4,656 TCFG from Slide 4).
Various Gas Remaining Resource Estimates

Excerpt Table 2 – Annotated and Updated with latest EIA and PGC Figures

Estimates of Remaining Resource

<table>
<thead>
<tr>
<th>Organization</th>
<th>Date</th>
<th>Offshore</th>
<th>Conventional</th>
<th>Tight</th>
<th>Shale</th>
<th>CBM 48</th>
<th>AK</th>
<th>Total US</th>
<th>Proved reserves</th>
<th>All US</th>
<th>Canada Onshore non-Arctic</th>
<th>Canada Offshore and Arctic</th>
<th>Total Canada</th>
<th>Total North America</th>
<th>Onshore non-Arctic N.A. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS/MMS/EIA</td>
<td>1997</td>
<td>657</td>
<td>308</td>
<td>50</td>
<td>1,015</td>
<td>223</td>
<td>1,238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USGS/MMS/EIA</td>
<td>2009</td>
<td>454</td>
<td>276</td>
<td>71</td>
<td>801</td>
<td>362</td>
<td>1,163</td>
<td>245</td>
<td>1,408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPC</td>
<td>1999</td>
<td>881</td>
<td>230</td>
<td>52</td>
<td>74</td>
<td>1,252</td>
<td>303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPC</td>
<td>2003</td>
<td>691</td>
<td>190</td>
<td>35</td>
<td>58</td>
<td>974</td>
<td>294</td>
<td>1,266</td>
<td>184</td>
<td>397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGC</td>
<td>2001</td>
<td>742</td>
<td></td>
<td>98</td>
<td>840</td>
<td>251</td>
<td>1,091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGC</td>
<td>2006</td>
<td>961</td>
<td></td>
<td>166</td>
<td>1,127</td>
<td>194</td>
<td>1,321</td>
<td>211</td>
<td>1,532</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGC</td>
<td>2008</td>
<td>863</td>
<td>616</td>
<td>163</td>
<td>1,642</td>
<td>194</td>
<td>1,836</td>
<td>236</td>
<td>2,074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGC</td>
<td>2012</td>
<td>131</td>
<td>1,892</td>
<td>158</td>
<td>2,181</td>
<td>194</td>
<td>2,384</td>
<td>305</td>
<td>2,689</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICF</td>
<td>2009</td>
<td>693</td>
<td>174</td>
<td>631</td>
<td>65</td>
<td>1,563</td>
<td>294</td>
<td>1,857</td>
<td>245</td>
<td>2,102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INGAA</td>
<td>2008</td>
<td>904</td>
<td>174</td>
<td>385</td>
<td>65</td>
<td>1,528</td>
<td>302</td>
<td>1,830</td>
<td>204</td>
<td>2,034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEB</td>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>627</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSUG</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MiTei Canada P10 2</td>
<td>Q2 2010</td>
<td></td>
</tr>
<tr>
<td>MiTei U.S. P10 2</td>
<td>Q2 2010</td>
<td></td>
</tr>
<tr>
<td>MiTei Pmean 2</td>
<td>Q2 2010</td>
<td></td>
</tr>
<tr>
<td>MiTei U.S. P90 2</td>
<td>Q2 2010</td>
<td></td>
</tr>
<tr>
<td>MiTei Canada P90 2</td>
<td>Q2 2010</td>
<td></td>
</tr>
<tr>
<td>RSTG Onsh Gas Case 3 3</td>
<td>Q3 2010</td>
<td></td>
</tr>
<tr>
<td>RSTG Onsh Gas Case 2 4</td>
<td>Q3 2010</td>
<td></td>
</tr>
<tr>
<td>RSTG Onsh Gas Case 1 5</td>
<td>Q3 2010</td>
<td></td>
</tr>
<tr>
<td>ANGA</td>
<td>Q1 2010</td>
<td></td>
</tr>
<tr>
<td>GTI Current</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>GTI Advanced</td>
<td>2010</td>
<td>1,002</td>
<td>337</td>
<td>53</td>
<td>1,528</td>
<td>530</td>
<td>2,058</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPC Survey High</td>
<td>Q4 2010</td>
<td>375</td>
<td>440</td>
<td>550</td>
<td>1,800</td>
<td>150</td>
<td>3,315</td>
<td>345</td>
<td>3,660</td>
<td>inc.</td>
<td>1,025</td>
<td>230</td>
<td>1,255</td>
<td>4,915</td>
<td>3,965</td>
</tr>
<tr>
<td>NPC Survey Medium</td>
<td>Q4 2010</td>
<td>260</td>
<td>290</td>
<td>350</td>
<td>1,000</td>
<td>120</td>
<td>2,020</td>
<td>210</td>
<td>2,230</td>
<td>inc.</td>
<td>695</td>
<td>175</td>
<td>870</td>
<td>3,100</td>
<td>2,455</td>
</tr>
<tr>
<td>NPC Survey Low</td>
<td>Q4 2010</td>
<td>160</td>
<td>215</td>
<td>200</td>
<td>700</td>
<td>90</td>
<td>1,365</td>
<td>130</td>
<td>1,495</td>
<td>inc.</td>
<td>370</td>
<td>130</td>
<td>500</td>
<td>1,995</td>
<td>1,575</td>
</tr>
<tr>
<td>EIA / ARI</td>
<td>Q2 2011</td>
<td>862</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>EIA 7 / ARI</td>
<td>Q2 2013</td>
<td>1,489</td>
<td>1,161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIA 7</td>
<td>Q2 2013</td>
<td>1,489</td>
<td>539</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that updated PGC and EIA data are in the range of NPC, MiTei and RSTG data sets.

Footnotes:

1. No adjustments have been made for interim production between years.
2. MiTei’s figures as published.
4. NPC RSTG Onshore Gas Sub-Group, sourced from detailed dataset from the MiTei Report prepared by ICF; $20/mcf supply cost cut-off assumed; Mean "Advanced" (2007) Tech Case.
5. NPC RSTG Onshore Gas Sub-Group, sourced from detailed dataset from the MiTei Report prepared by ICF; $20/mcf supply cost cut-off assumed; Mean "Current " (2007) Tech Case.
6. Sum of U.S. and Canada; but not really a valid statistical function.
7. Includes 5% shrinkage factor.

Meggs, Anthony J.M.; MIeTei, 2010 emails on supply and cost information.

USGS/MMS/EIA. (2009).

ICF, 2009.

ANGA, 2010. America’s Natural Gas Alliance www.anga.us

EIA (June 2013). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States